
Extreme
programming virtues and benefits

Timothy Edwards is
Principal Engineer
of Seeing
Machines. He has
experience in
systems and
software
engineering, from
developing high-
speed digital logic
to software
engineering and
team management.
Edwards has
bachelor degrees in
Systems
Engineering and
Computer Science
and eight years’
experience in the
areas of RADAR
design, graphics
and animation,
robotics and
computer vision.
E-mail:
Tim.Edwards@
seeingmachines
.com
Visit: www.
seeingmachines
.com

| software | june 2003 |46 | www.seanational.com.au

Fortunately, there was a great marketing warrior
and enough systems were sold to start working on the
next version. However, it wasn’t long before the pres-
sure was on again for bug-fixes and feature improve-
ments, due to the low-quality of the first release.

Thankfully, instead of rushing back to the grind-
stone, a little breathing space was taken as a post-
mortem was performed on what had occurred.

Becoming agile
Most software engineers will have heard of the ‘agile’
way of doing things. To the experienced ear it probably
sounds like yet another silver bullet. It is simply
‘applied common sense’.

From past employment experiences, it was recog-
nised that changing established methods of software
engineering can be extremely difficult, even if the
existing process is unrewarding for developers and
delivers poor results. Therefore, the top priority was to
attempt to integrate a philosophy of continuous
improvement and learning into the environment, so that
if things started going wrong, they could be changed.

Despite formal educations in traditional development
techniques, what was known was eagerly erased on the
course in extreme programming – a popular new
technique applicable to small teams, and delivered by the
inspirational Dwayne Read of Strategic Systems Pty Ltd.

What was learned, besides the simple and powerful
‘XP’ methodology (some techniques of which are dis-
cussed below), was that this basic idea of embracing and
incorporating change on a regular basis is the key to
staying in control of this non-linear beast called
software development.

Termites and software
Generally speaking, complex dynamic systems (of
which the software development process is a good
example) can exhibit emergent behaviours. Such
behaviours can be remarkably sophisticated, relative to
the system’s fundamental processes.

Frequently used is the example of termites. Termites
have tiny brains and a small set of behavioural patterns,
yet somehow, despite no obvious central intelligence,

Seeing Machines is a company that has strong beliefs
about how to develop software. Fundamentally,
software engineering is crucial to success. The process
of software engineering must continuously evolve as
developers, development technologies, networks,
platforms, customers, markets and business goals
change over time. To deliver high-quality products now
and in the future, it is essential that a culture able to
embrace change is generated.

The startup struggle
In the first six months of development, enough source
code had been generated to reach that awful mental
limit where it was no longer possible for a single person
to comprehend the system in its entirety.
The attempts to cope were through:
✚ Using the skills as experienced developers to write

high-quality, well-documented and reusable object
oriented code

✚ Regularly meeting and discussing designs
✚ Using strict source-code control
✚ Segmenting code into many libraries and ensuring

strict hierarchical dependencies were maintained in
these libraries

✚ Reading textbooks ad hoc to try to learn new skills
When the company launched, there was extraordi-

nary pressure to deliver the first product. It was a
make-or-break situation in an environment where:
✚ Only the needs of a single customer were known,

therefore, how most of the features would be used
had to be guessed

✚ No time was available to properly test the system,
given the scope of what had to be done

✚ There were only one or two developers with expert
system knowledge, and who were heavily relied
upon to complete ‘their sections’ of the code

✚ There was a culture of 80-hour weeks, all-night
coding and general martyr-like behaviour, which
existed, not only in the development team, but
across the entire company

The release date was missed by several months, the
software was very buggy and the mood around the com-
pany was one of pinning blame (‘blame-storming’).

technology
methodology➔

E
XT

R
E
M

E
 P

R
O

G
R

A
M

M
IN

G
 C

as
e

st
ud

y

In part two of the Seeing Machines case study, Timothy Edwards
discusses human–machine interfaces, the company’s revolutionary
technology that is underpinning its global success

| software | june 2003 | 47www.seanational.com.au |

E
XTR

E
M

E
 P

R
O

G
R

A
M

M
IN

G
 C

ase study
technology
methodology ➔

programmers lose sleep.
2. The system stagnates and remains impervious to

attempts to push it along. The process feels ‘heavy’
and programmers become demotivated and
sluggish. As bugs levels rise, schedules slip and
things get ‘foobared’ (‘foobar’, or more correctly,
‘fubar’, is an old hacker term accurately describing
this situation).

Extreme programming
What extreme programming gave us was:
✚ A formalisation of what seemed to be plain old

common sense
✚ A starting point for the company to evolve its own

way of doing things
After the experience with the first release, the

following was implemented:
✚ Handing over the responsibility of feature

prioritisation to marketing (this removed a lot
of pressure).

✚ Discouraging ego-coding and code ownership
through ‘pair programming’.

✚ Setting up a unit testing framework, unit testing all
new classes and writing quick tests for the most
important older classes.

they can build incredible colonies with towering
structures containing fungus gardens, nurseries and
even air-conditioning systems. These things are not
designed; they are the emergent properties of the
termites’ behavioural rules.

Central to the success of the termites is that their
behavioural rules have evolved.

Evolutionary processes require feedback from the
environment. With termites, success is measured in
terms of reproduction, and the unavoidable feedback
comes in the form of echidnas, droughts, floods and
bacteria.

With software engineering, success is a function of
delivery dates, features and bugs, and the feedback that
should really occur at every level of the process – from
the way code is entered to the way we listen to our
customers – is, unfortunately, quite easy to avoid. This
is because incorporating change is often too hard and
time-consuming.

As complex-systems experts, we know that as our
environment changes, things can go wrong in two ways:
1. The system becomes chaotic. Rules are bent and

ignored because they no longer seem to fit, or get
in the way of rapid progress. Bug levels rise,
features mutate and creep, schedules slip and

BENEFITS

Emergent QA
Some of the hype seems to be true. With extreme programming, desirable things like quality assurance just
seem to come out ‘in the wash’ (it is an emergent property). This is because a lot of time is saved by not
making mistakes in the first place and catching those mistakes early.

This is not to say that the QA team should be sacked. It just means faster testing.

Emergent happiness
At over 700 classes with 14 threads and some scary real-time stuff, it can be admitted – nobody knows how
faceLAB works in its entirety. The development team is just like the termites in that regard.

However, they are also confident that they will get the next version out on time, that it will have the
features most wanted by the customer and that the system will be reliable. Generally, this all adds up to more
sleep and happier and more creative engineers.

A cultural shift
Ultimately, the approach was recognised as a major success inside the company, to the point where some of the
techniques have been taken on board by senior management. ‘Prioritising goals’ and ‘refactoring the plan’ are
expressions heard quite often around the company.

Environmental change
Recently, the environment at Seeing Machines has shifted drastically. Having gotten to their feet with the
flagship product faceLAB, now out the door with several solid releases and raising some fairly significant
revenues, they are now in a position to take the next steps.

On the technical side, several new research projects have recently begun to discover even better vision-
processing techniques, as well as embedded system and hardware engineering projects aimed at reducing
costs and meeting automotive specifications.

Consequently, there are wonderful new ways for things to go wrong. The code base is diverging due to
opposing development forces. Some developers are working on multiple teams. Bugs are getting fixed in one
branch and not propagating to the other branches. Resource pressure is breaking down pairing and code
ownership and specialisation are all creeping back in.

Feedback. Time to evolve the rules ...

▲

Business / Project Management
Process / Methodologies
Programming
Testing / Certified Software Test Professional
Service Management
Security

Discounts available for

S|E|A| members and subscribers,

ACS members

Multiple bookings

Did you know that all of our courses, workshops and
industry briefings can be conducted at your premises
and can be customised to suit the needs of your employees?

Software Engineering Australia offers IT
professionals and business executives with
over 70 quality training courses nationwide,
across the following streams:

Customised, in-house training...
...at your service

To find out more about our Education Services for 2003:

Call: 1300 884 889

Email: sj_events@seanational.com.au

Visit: www.seanational.com.au

✚ Encouraging ‘courage’ (diving into unfamiliar
code) and refactoring principles using unit-testing
as a foundation for confidence.

✚ Identifying and stopping many instances
of overdesign.

✚ Introducing morning stand-up meetings –
five minutes to plan the day over the morning
coffee table.

✚ Developing in three-weekly iteration cycles where
task breakdown is performed, prioritisation and
pair assignment. At the end of each iteration, the
software is planned to be fully operational and is
internally released for smoke testing. Every three
iterations, the software is fully system tested and is
suitable for customer release. Iteration deadlines
are strict to within one or two days at most.

✚ Changing the attitude of heroic late-night coding
efforts to working up the courage to go home

at normal times.
✚ Committing significant time to

achieving basic levels of automation
and continuing to spend a day or
two every few weeks improving the
system, firstly by ensuring automatic
builds, unit tests and html source
documentation tools ran nightly.
Breaking the build became a crime!

A bug-tracking database was started. Lint was auto-
mated. The net was explored for new developer
tools, which were evaluated and purchased where
necessary. The Technical Support and the faceLAB
Calibration processes were automated.

✚ Formal code inspections were started to both com-
municate and improve company standard practices –
placing an emphasis on existing reusable library code
and all new classes.

✚ Collecting an e-mail knowledge base of develop-
ment ideas for use as feedback into the process.

✚ Starting a weekly reading group to work through
several of the classic software engineering text-
books including Design Patterns, Refactoring and
Modern C++ Design, as well as discussing existing
design structures in the codebase.

✚ Establishing the expectation that after every major
release, the development team would leave the
premises for a day or two, slap each other on the
back for doing a good job and then think about
how the environment has changed – subsequently
finding ways to revise and improve the processes. ■

technology
methodology➔

E
XT

R
E
M

E
 P

R
O

G
R

A
M

M
IN

G
 C

as
e

st
ud

y

FURTHER INFORMATION
Refer to Software journal (April 2003) for part one of
Seeing Machines’ case study: ‘Technology that sees’.

