STRATEGY Disposable packages

technolo

methodo ggy

Michael Tan is a
Principal Consultant
at Acumen Alliance
and has more than 20
years’ experience in
information systems.
He has a strong
technical background
in systems
development,
application
architectures and
project management.
Tan works as a
consultant providing
IT strategic planning
skills to Common-
wealth departments,
statutory agencies
and private sector
businesses overseas.
E-mail: michael.tan
@acumen.com.au

Dwayne Read is an
Engineering Process

Consultant at Strategic

Systems and is a
process mentor and
trainer with over 14
years’ experience in
software engineering.
Read specialises in
object-oriented
techniques, extreme

programming practices

and a range of proven
development and

technical management

activities. E-mail:
dwayne@ss.com.au

oftware.engineering
disposable packages

Michael Tan and Dwayne Read explore why building add-ons
to software packages benefit users and developers

Car analogy

I knew a yuppy who spent $20,000 on top-of-the-range
car hi-fi equipment for his $15,000 car. Crazy, it
seems. My wise acquaintance said not. “When I
change my car (like, every six months), I simply bolt
my hi-fi gear onto my new car. What’s the problem?”

It raised the question: why can’t the same be done
for the software industry? If the car represents a
package and the hi-fi gear is the ‘add-on’ made to the
package, why can’t the add-on stuff simply be ‘bolted
on’ to the new version of the package?

If you are a package developer, you want to provide a
package that offers ease of add-on functions like car
manufacturers allowing users to add a hi-fi system. There
is a need for such a type of package and the software
engineering techniques that enable these flexibilities.

Package versus build

The business case between commercial off-the-shelf
packages and build-your-own has been widely dis-
cussed. Most organisations prefer the package
approach if suitable packages are available. Addition-
ally, many prefer to change the business processes to
fit a package rather than to modify the package to fita
process. But in the highly competitive world of today,
what competitive advantage can one glean from the
package if everybody simply adapts to the package?
How can one differentiate oneself from the rest? If an
organisation has a superior business strategy, it must
be able to implement these strategies through some
unique business rules in a package to differentiate
itself from those who use the same package. But how
does one do that?

The key concept here is add-on versus modifications.

Current inhibitors

In the current software environment, it is not a simple
job to take all the modifications one has made in an
older version and reuse these in a new version of a

62 | software | december 2002 | %> S|E|A|| www.seanational.com.au

package. The norm is to reapply the modifications
through some forms of linkages or compile and link
edit. This is a tedious task because the package has
been modified. The more one modifies a package to
meet one’s needs, the higher the risk that the modifi-
cations won’t fit or that it takes a lot more effort to fit
the modifications to the new version of the package.

Add-on versus modification

It is, therefore, important that users should not mod-
ify a package. The maintenance and evolution of a
package should remain the realm of the vendor. To
provide flexibility to meet specific user needs, the
package should provide interfaces where users can
implement their own business rules. These implemen-
tations must not modify the package itself. They
merely add to the package using the interfaces.

A case in point

A Commonwealth department administers some
60-plus grants in its portfolio. It will be an outrageous
investment building a program management system
for each program. The investment will be huge and
time consuming. On the other hand, all the programs
share about the same processes at the high level, as
depicted in Table 1. Only minor differences in terms
of specific business rules exist in some of the lower
processes. Examples of the differences are data
collection and the criteria used in the evaluation
during the review process.

Table 1 also lists typical variations to the key
functions and the type of technology required to
support the processes.

The department went to the market for a package
that provides support to the main processes at the top
level. The package must also provide capability to sat-
isfy individual program differences as depicted in the
variations row of Table 1. If you were a package devel-
oper, how would you design your system? In the fol-

APPLY REVIEW APPROVAL DISBURSEMENT
=Apply =Review applications | =Review =Validate and pay
2 <Query status =Recommended recommendations =Return payments
8 =Maintain accounts =Approve for receipts
2 payments =Payment receipts
E =Pass payment updated in
o details to FMS for database
payments
=Data collections =Business rules to
o =Validation rules qualify an
3 application
=
<
=
=Browsers =Browsers =Browsers =SAP
3 =QOracle =QOracle <FTP <FTP
S eE-mailand XML XML
2 attachments =Qracle =QOracle
S =EDMS
=

Table 1 High-level processes and functions of a grant management system

lowing sections, some software engineering techniques
are offered that can be used to provide the capabilities.

Handling variations

For a system to be able to handle the variations as add-
ons, it has to be designed to do so. This is at the heart
of software architecture. The realities are that require-
ments change, technologies change, the market/cus-
tomer wants more flexibility and the development
organisation wants to gain better reuse to help reduce
costs, time to market and so on. This doesn’t just hap-
pen by chance — it has to be designed to handle it.

As indicated in Figure 1, the first step to designing
software architecture (also known as being ‘architec-
turally centric’) is that the variations of the system are
identified and scoped — known as the architectural
requirements. This is actually harder than it appears.
It is undesirable to just say that the entire system is
end-user configurable (or similar), as this is too broad.
To go down this track will more likely than not result
in significant expense and delays as one attempts to
develop the ultimate generic solution — too ideologi-
cal. Energies need to be focused on the parts that are
variable, and these should be clearly scoped.

As with any good requirements
specification, the architectural

technolog

methodolog

ACQUITT,

=Enter audit reports
=Process audit
reports

=Browser
<Qracle

MINISTRATION

<Add users
=(Query status
=Check payments
=Who has what

=QOperational
queries

(above) is a fairly common situation where the

business rules are different for each customer/

department or they change over time.

The variation ‘business rules to qualify an

application’ would typically be scoped as follows:

[l Configure business rules to qualify an
application (ARCH-007) — The Department
Manager can alter the settings of the business

rules that indicate the approval or disapproval of

an application. The configurable parameters (for

the default business rules) are:
* Maximum revenue threshold (e.g. $20 million)
* Minimum revenue threshold (e.g. $10,000)

® Maximum total portfolio value threshold

(e.g. $5 million)

® The roles that can manually approve

(i.e. override) an application (e.g. director).

[l Replace business rules to qualify an
application (ARCH-008) — The Systems
Integrator can install alternative business rules

logic to be applied in the qualification of an appli-

cation. Note: any configurable parameters for the

alternative business logic will need to be specified.
So what has been achieved here? Hopefully, the

requirements must be testable. This _
Architectural

gives the architecture a clear goal of Requirement

what (and where) effort needs to be

applied to ensure that a new or pE—

B 4
Requirement | 4

replacement add-on can be
incorporated.
The ‘business rules to qualify an

application’ variation from Table 1

Design ;
Principle PDzStStlegrrrll > | 5 g(;?ljdtl:gl:
Architectural LV
Pattern N
Design Design BEETER Product
Principle [N pattern [P > Solution
Architectural
Pattern
) || Product
Design Design | Solution
Principle Pattern

Figure 1 Key steps for framework development

safexoed ajqesodsiq A931VHLS

Acumen Alliance
provides consultancy
services in financial
management and
systems, human
resource
management and
systems, audit and
information
technology
management. It has
offices in Canberra,
Sydney, Melbourne
and Brisbane. Visit:
Www.acumen.com.au

Strategic Systems
provides product,
training and
specialist consulting
services focused on
bringing industry-
proven best practices
to software and
systems development
organisations.
Strategic Systems
developed the

‘EP on-line’ process
used internationally.
Visit: www.ss.com.au

>

www.seanational.com.au | %> S|E|A| | software | december 2002 | 63

STRATEGY Disposable packages

technolo

methodo ggy

For a system to be able to handle the variatiofis.as add-ons it has to
be designed to do so. This is at the heart ef/software architecture

extent of the ‘variation’ that is required to be han-

dled by the system has been clarified. The second

architectural requirement (ARCH-008) is the crit-
ical one, as it is highlighting that a mechanism
needs to be built to enable replacement of the
business rules — this would be an add-on. The first
architectural requirement (ARCH-007) is actually
just an instance of one of these, probably the
default one for the framework, showing that it
actually has some configurable parameters (that
will need user interface, etc.). Ivar Jacobson’s! use
case analysis approach lends itself to scoping these
two architectural requirements in the form of

‘verb the noun’ (‘configure’ being the verb and

‘business rules’ being the noun). Why? Because it

helps to ensure that they are testable. The roles (a

la ‘actors’) that can undertake these tasks have been

identified (i.e. the department manager and the
systems integrator). This gives more context and
indicates who has the privileges to do these tasks.

Now for the design work. The system architecture
needs to be captured in three ways: the logical and the
physical architecture and a set of design principles.

1. The logical architecture is typically captured in
the form of a package diagram, possibly with some key
interface classes represented. This should provide the
roadmap of how the software is modularised, typically
into layers (e.g. presentation, security, business layer,
transaction, persistence, legacy interface) and
partitions (e.g. contact management, timesheets,
payroll), plus where any critical third-party and/or
legacy components logically reside (e.g. an object
request broker, a database gateway.).

2. The physical architecture is typically captured
as a combination of the deployment and component
diagram. There should be one for each network
topology that needs to be supported (e.g. local area
network, LAN, plus fibre optic WAN to headquarters,
and etc.). These show the physical hardware, the
executable software and pertinent data stores.

3. It’s the design principles that are the interesting/
challenging part of architectural design. This stems
from some work by Richard Helm, one of the Design
Patterns authors.? The architecture’s design principles
are the rules of why the design is the way it is,
capturing the motivation and impact of adhering to
such rules. For the ‘business rules to qualify an
application’ example, some design principles would
probably be along the lines of:

64 | software | december 2002 | %= S‘E‘A‘ | www.seanational.com.au

"1 All business logic in domain objects: All valida-
tion and processing of business logic is encapsulated
in the domain objects within the business layer.
Note: only base-type data entry validation (e.g. inte-
ger, date, etc.) is permitted in the presentation layer.
Motivation: Consolidation of business logic in
one area; easier to extend and/or replace; thinner
and ‘dumber’ clients.

Impact: Two-step validation of data (field and
domain object), simpler GUI code.

"1 All domain objects to call ‘extendLogic’:
Before applying the ‘core’ business logic, each
domain object will call the ‘extendLogic’ method
that will execute any customised business logic and
return true/false to the calling object. The ‘core’
business logic will then run/not-run according to
the Boolean return.

Motivation: Common mechanism for extending
business logic without the need to alter existing
code; isolate the customer unique extensions.
Impact: Isolates extensions without code changes;
call overhead for domain objects with no extended
business logic.

These fairly specific design decisions focus purely
on enabling the business logic to be replaced. There
are several (maybe more) ways of meeting the same
architectural requirements, but this is what has been
decided. This is architecture, even though a particular
method and even its return type (Boolean) is being
referred to. Architecture is not just about high level
design statements, it’s about common mechanisms
being employed across the entire system (or a large
part thereof). The reason the motivation is stated is to
ensure that the rules of the architecture are justifiable.
The reason for stating the impact is to ensure that the
pros and cons of this rule have been considered —
there are always some negative side-effects, but at
least this is understood upfront. Plus, these rules
should be critiqued and even argued about by the
development team, now and in the future (remember
that requirements change) — this is healthy.

Key design principles
Now, beyond the ‘business rules to qualify an
application’ example followed here, how should
‘variations’ in the large be tackled so that the system
can be comprised of disposable packages?

The two fundamental design principles that come
together to enable this approach are:

technolog

methodolog

1. Isolate and encapsulate

dependencies This is all about
finding good abstractions and

| T

“information hiding — two of the

founding characteristics of object-

oriented (OO) software engineering
itself. To enable package disposal

=

and replacement, the elements must

first be isolated. That is, ‘a red
circle’ needs to be drawn around

the features that are going to

change, these are separated from

the rest of the system (to reduce the

direct dependencies) and then encapsulated through
some form of interface mechanism, such as a simple
interface or abstract ‘wrapper’ class, interface defini-
tion language (IDL) or XML (Extensible Markup
Language) for cross-platform encapsulation, etc. Now
this is even harder than coming up with the architec-
tural requirements — as one is effectively second
guessing what’s going to change in the future and how
(to some extent), but there is no need to worry too
much about this, per se — it’s a challenge, but iterative
development and refactoring help in this regard.

2. Open/closed design principle This means to
ensure that the functionality of the application can
easily be extended (read ‘open to extension’) in such a
way that the rest of the application (and several sibling
applications at other sites) don’t have to change their
implementation (read ‘closed to modification’). This
can work at several levels. At the lowest/class level
abstract (more generalised) classes will be created
that become the ‘hooks’ that the rest of the application
is allowed to call and, thus, be dependent upon.
Sub-classes will then be created that inherit from the
abstract class, enabling any one of many concrete
sub-classes to be substituted at run-time ‘behind the
abstract interface’ without the calling code knowing
(this is known as polymorphism). Mechanisms can be
built to further hide the construction of the concrete
sub-classes through such design patterns as the Abstract
Factory.3 At the higher/component replacement level
an interface class or mechanism (IDL, XML, broker,
DCOM, etc.) may be used to switch components
(either built in-house or from a third party) that adhere
to the same interface/protocol (these components are
known as the ‘realisations of the interface’). Obviously
one would typically have a combination of class and
component level mechanisms to handle the typical
variety of disposable packages and add-ons.

Building a framework (the implementation)
The architectural and design patterns have been men-
tioned in the context of the design principles above.

Figure 2 Frameworks provide the placeholders for the packages
to be replaced

These patterns provide the models to enable the
reuse, flexibility, extensibility and consistency
required. So what are the key aspects of actually
building a framework?

The framework repository is considered as the
implementation and integration of all components
(source code, binaries and data) developed in-house
and from third parties that are specific to an applica-
tion domain. The reason why a framework must be
domain specific is that a business has a particular focus
in the market, so if the framework’s focus is aligned
with that, then the effort and complexity of the
developments will be dramatically reduced and
actually achieve a higher level of reuse, requiring less
application-specific development to integrate the
packages and add-ons together. One cannot be all
things to all people. The framework needs to be
the equivalent of being able to buy any car (the frame-
work) and any hi-fi equipment (the customer’s add-
on). All that is then required is to wire the two
together, maybe making some kind of adaptor plate to
physically join the two — this is ‘systems integration’.

As portrayed in Figure 2, the framework provides
the placeholders (the shaded parts) for the packages
that are designed to be replaced. Often a framework
will actually come with some default packages that
make it a ‘complete application’, but it is expected that
at least some of these will be replaced.

At the heart of a framework are the interfaces.
These are the focal points of any architecture and
should be one’s own interface (even if it’s based on a
third party’s). Why? So that it can be controlled — if
it changes it can hurt ... If/when a third-party
component does change then if and how the update
is incorporated can be controlled. This can be
considered as ‘glue’ technology.

How far one can go with the framework depends
on the nature of the domain (extent of variations
required) and technologies one needs to support.

>

safexoed ajqesodsiq A931VHLS

www.seanational.com.au | <%= S‘E‘A‘ | software | december 2002 | 65

STRATEGY Disposable packages

technolo

methodology

There needs to be a set of standard interfacing techniques that users
can use to build add-ons to packages

However, the reality is that the framework needs to be
pitched to minimise the coding activity to a little bit
of integration code for each project/product variant
and emphasise the building and adoption of a suite

of packages and add-ons (third party or developed
in-house) that can be easily integrated and reused.

Replacing packages and adding add-ons

With the framework in place, the entire process
changes from one of software development to one of
systems integration. Building a framework repository
with the ability to add/replace packages (at varying
levels) is hard work, takes several iterations, several
applied projects and will/should always be an ongoing
development activity (even more so than specific
project development work). Both the initial and
ongoing development of the framework needs to
ensure healthy refactoring? of the software to make it
easier, cleaner and more cost effective to replace the
packages and integrate the add-ons.

As a ‘systems integrator’, the most common activity
now becomes one of creating the bindings to the new
package so that it complies with the framework’s
interfaces and comes to ‘life’ with the unique flavours
required by the next customer. So the same features can
be effectively maintained but the underlying technology
(e.g. database) can be replaced, security can be
added/altered, different business logic/rules can be
incorporated, the look-and-feel can be changed, and
etc., so long as the interfaces are adhered to. These
interfaces can be custom made or one of the emerging
industry ‘standards’. However, one should always put
their own ‘wrapper’ around any third-party component,
albeit a standard or otherwise, as even standards change.

These bindings will typically take the form of a
class or two that translate the interface or call struc-
ture of the add-on to that of the framework’s defined
interface or abstraction. As always, there are several
options to achieving this: straight through calling
code, a parallel inheritance hierarchy (such as the
Bridge pattern), calling a broker (typically third
party) that will undertake the translation (although
one needs to be compliant to their interface, not the
other way around).

So now with the framework, instances can be
created to produce as many product solutions as there
are customers (or target markets) in a very time and
cost-effective way.

66 | software | december 2002 | <%= S|E|A| | www.seanational.com.au

Conclusion — a disposable package

In the car analogy, the car hasn’t been modified in
order to use the hi-fi gear. The top-of-the-range hi-fi
gear is a mere add-on. They are easy to fit because
they have the same interfaces as the bundled hi-fi
systems. In fact, the interface is so similar in the car
industry that my yuppy friend can keep changing cars
and still use the same hi-fi gear.

That is what needs to be achieved in the
software industry. There needs to be a set of
standard interfacing techniques that users can use
to build add-ons to packages, very much like hi-fi
equipment for cars. Obviously the nature of the
interfaces in the software world are more complex
and dynamic, so protection mechanisms need to be
built around these interfaces (standardised or
otherwise) to enable these replacements. Users
invest in the add-ons to packages to meet business
needs. The add-ons can be reused easily as users
upgrade to new versions of the package. The
package itself is disposable. When a new version is
available, the user can simply toss out the old
version and apply the add-on to the new version.

With this approach, a disposable package will
provide the value of a package (short implementation
and low risk). A disposable package will also offer the
users great capabilities to meet user-specific require-
ments without modifying the package. Users will
continue to benefit from the package evolution as the
vendor adds more function to the package to cope
with advances in the industry and technology. L

